Einfachste Lineare Funktion + Wertetabelle

Ich habe heute meinen ersten Mathematik-Vlog bei Youtube hochgeladen. Es geht um die einfachste Lineare Funktion und die Wertetabelle. Auch gebe ich einen kleinen Einblick in Geogebra.

StudySpace Youtube Tutorial – Einfachste Lineare Funktion + Wertetabelle

Aufgabe "Impfstoff A_107" (Teil b und c) aus dem Mathematik Aufgabenpool

Die matheamatische Grundlage zur Lösung des Beispiels “Impfstoff A_107” (Teil b und c) aus dem Mathematik Aufgabenpool sind Lineare Funktionen bzw. Lineare Gewinnfunktionen, welche einen linearen Verlauf haben.

Lineare Funktion: \(f(x) = k \cdot x + d\)

Teil bGewinn

Bei Teil b geht es darum, die zwei Gewinnfunktionen zu verbinden. Geometrisch betrachtet suchen wir den Schnittpunkt von zwei Geraden, denn jede Lineare Gleichung entspricht geometrisch einer Gerade.

\(
G_1(x) = 120 \cdot x \\
G_2(x) = 250 \cdot x – 750000
\)

Mit Hilfe des Gleichsetzungsverfahren setzen wir die beiden Gewinnfunktionen gleich. \(G_1(x) = G_2(x)\)

\(120 \cdot x = 250 \cdot x – 750000 | – 250 \cdot x \\
– 130 \cdot x = – 750000 | : -130 \\
x = 5769,23
\)

Das Ergebnis muss jedoch von 5769, 23 auf 5770 Packungen aufgerundet werden, da Unternehmen für gewöhnlich nur ganze Packungen verkaufen!

Ab 5770 verkauften Packungen ist die Gewinnfunktion G2 fĂĽr das Unternehmen besser.

Teil cAbstand von zwei Geraden messen

Bei Teil c geht es darum den Abstand zwischen zwei Gewinnfunktionen zu messen, wobei der Abstand parallel zur y-Achse (Gewinn) gemeint ist und dieser genau dem Wert 10.000 Euro entsprechen muss. 10.000 Euro entsprechen genau der Höhe eines Kästchens. Diese Höhe muss zwischen die zwei Geraden eingepasst werden. Bei ca. 165 und ca. 280 verkauften Packungen beträgt der Unterschied der Gewinnwerte € 10.000.

Gewinnfunktion Impfstoff A_107 - Teil c
Gewinnfunktion Impfstoff A_107 - Teil c
Gewinnfunktion Impfstoff A_107 – Teil c

Aufgabe "Impfstoff A_107" (Teil a) aus dem Mathematik Aufgabenpool

Die matheamatische Grundlage zur Lösung des Beispiels “Impfstoff A_107” (Teil a) aus dem Mathematik Aufgabenpool sind Lineare Funktionen bzw. Lineare Kostenfunktionen, welche einen linearen Verlauf haben.

Lineare Funktion: \(f(x) = k \cdot x + d\)

Bei der Teil a verwenden wir folgende Kostenfunktion: \(K(x) = k \cdot x + d\)

K(x) steht für die Gesamtkosten, die von der Anzahl x der gekauften Packungen abhängig sind.

Erste Möglichkeit:

Bei der ersten Möglichkeit können Rechte um 10 Millionen Euro (= 10.000.000 Euro) gekauft werden. Diese “10 Millionen Euro” entsprechen in der Funktion dem sogeannten “Fixpreis“. Diese Kosten mĂĽssen zu den laufenden Kosten fĂĽr die Produktion hinzugerechnet werden. Fixkosten entsprechen immer dem “d” in der Linearen Gleichung. Fixkosten mĂĽssen unabhängig von der produzierten StĂĽckzahl bezahlt werden.

Die laufenden Kosten betragen 25 Euro pro Packung (=StĂĽckpreis). Dies entspricht der Steigung der Linearen Kostenfunktion. Je höher dieser StĂĽckpreis, desto höher steigen die Kosten und desto steiler wird die Gerade. (–> Direktes Verhältnis!) Die Steigung bzw. die StĂĽckkosten entsprechen immer dem “k” in der Linearen Gleichung.

Setzt man nun statt d und k die angegeben Werte in die Kostenfunktion oben ein, so erhält man folgende Lineare Gleichung:

\(K_1(x) = 25 \cdot x + 10.000.000\)

Zweite Möglichkeit:

Die zweite Möglichkeit geht genauso wie die Erste, jedoch gibt es diesmal keinen Fixpreis (ohne Rechte um 1 Millionen Euro), daher ist “d” null bzw. nicht verhanden.

Es mĂĽssen statt dem Fixpreis höhere StĂĽckkosten bezahlt werden. Diese betragen 50 Euro pro Packung. Diese Kosten entsprechen der Steigung “k” der Funktion.

Setzt man nun statt d und k die angegeben Werte von oben in die Kostenfunktion ein, so erhält man nun folgende Lineare Gleichung:

\(K_2(x) = 50 \cdot x + 0\)

Stell man die beiden Kosten in Geogebra graphisch dar, so kann man erkennen, welche Möglichkeit sinnvoller ist.

Hier der Link zu Geogebra: https://www.geogebra.org/m/ywzfhxzh

Kosten Diskothek-Besuch (Lineare Funktion)

Lisa und ihr Freund Peter gehen öfters Diskotheks in Wien besuchen, um anstrengende Arbeitswochen ausklingen zu lassen.

Beispiel 1

Einmal wollen sie nur Kokus-Coctails trinken gehen. Sie mĂĽssen dazu einen Eintritt von 12 Euro zahlen*. Jeder Cocktail kostet 4,5. Sie bestellen insgesamt fĂĽnf Cocktails.

1) Wieviel kostet ihr Besuch insgesamt? Wieviel kostet ihr Besuch insgesamt, wenn sie einen weiteren Cocktail bestellen?

2) Stelle die Kostenfunktion des Besuchs als Lineare Funktion graphisch dar! Wie lauten diese Kostenfunktion?

Lösung Beispiel 1:

Mathematisch gesehen handelt es sich bei diesem Beispiel um eine Lineare Funktion nach dem Schema:

\(f(x) = k \cdot x + d\)

Dabei entspricht:
k = Preis fĂĽr einen Cocktail (Steigung)
x = Anzahl der Cocktails
d = Eintrittspreis (Fixpreis)
f(x) = y = Preis fĂĽr den gesamten Besuch

Setzt man nun k (=4,5 Euro) und d (=15 Euro) in die Lineare Funktion ein, so erhällt man folgende Kostenfunktion:

\(f(x) = 4,5 \cdot x + 15\)

Je nach Anzahl der bestellten Cocktails muss am Ende etwas anderes bezahlt werden. Je mehr Cocktails, desto höher der Gesamtpreis für den Besuch (inklusive Eintrittspreis).

Für x = 5 (=5 Cocktails) erhält man folgende Gleichung:

\(f(5) = 4,5 \cdot 5 + 15 = 37,5\)

Für einen zusätzlichen Cocktail x = 6 (6 Cocktails) erhält man folgende Gleichung:

\(f(6) = 4,5 \cdot 6 + 15 = 42\)

Die graphische Lösung von Beispiel 1 gibt es auf Geogebra: https://www.geogebra.org/m/e339tfaz

* Hinweis: Die Preisangaben in den Beispielen oberhalb sind frei erfunden und dienen lediglich Anschaungszwecken.

Lineare Funktion – y = k*x + d

Geraden als Funktion – die Lineare Funktion – In diesem Blog-Eintrag erfährst du, was es mit der Linearen Funktion auf sich hat, wie sie aussieht und was es mit der Steigung und der Verschiebung auf der y-Achse auf sich hat.

Die allgemeine Form der Linearen Funktion in der expliziten Darstellung sieht so aus:

\( f(x) = k \cdot x + d\)

Hinweis: Oft wird anstatt f(x) auch y geschrieben. Beides bedeutet das Gleiche, nur sind es unterschiedliche Schreibweisen.

Ăśbrigens entspricht x dem Definitionswert (aus dem “Definitionsbereich”) und f(x) bzw. y dem Funktionswert einer Funktion.

Sicher fragst du dich jetzt, was die Steigung der Gerade und Verschiebung auf der y-Achse fĂĽr eine Bedeutung haben.

Kurz gesagt sind k und d zwei Parameter, die eine Auswirkung auf f(x) bzw. y haben, wenn man sie verändert.

k nennt man die Steigung (der Geraden) und
d nennt man die Verschiebung auf der y-Achse.

Mit Hilfe dieser Geogebra-Animation (auf den Link klicken) könnt ihr sehen, wie sich die Gerade verändert, wenn ihr einen oder beide Parameter verändert.

Verschiebe den Regler von k und d hin und her und beobachte, wie sich die Gerade verändert!

Je größer die Steigung k wird, desto steiler wird die Gerade.
Je kleiner die Steigung k wird, geringer wird die Steigung.
Eine Gerade hat keine Steigung, wenn k = 0 ist.

Ist die Steigung positiv, so geht die Gerade nach obene.
Ist die Steigung negativ, so geht die Gerade nach unten.

Der Parameter d beschreibt eine Art Grundmenge von der wir “starten” bzw. beschreibt d den Punkt auf der y-Achse durch den die Gerade geht.

Die Lineare Funktion ist auch ein Beispiel fĂĽr die sogenannte “Direkte Proportion“:

Steigungen können das Wachstum veranschaulichen. Je größer die Steigung, desto schneller wird das Wachstum eines Vorgangs.

Je größer die Beschleunigung eines Autos, desto schneller Fährt es.
Je mehr Autos in einer Stunde produziert werden, desto mehr Angestellte braucht man, um die Autos zu produzieren.

Ăśbungsbeispiele:

Gleichungssystem mit zwei Variablen (Unbekannten)

In diesem Artikel erfährt ihr, was Gleichungsysteme mit zwei Variablen (x und y) sind und mit welchen mathematischen Lösungsverfahren ihr sie lösen könnt!

Die Grundlage dieses Themas ist ein Gleichungsystem mit zwei oder mehreren Gleichungen und mit zwei unterschiedlichen Variablen. Meist werden die Variablen x und y dafĂĽr verwendet.

Die wichtigste Gleichung, die ihr euch merken mĂĽsst, ist folgende Gleichung:

\( a \cdot x + b \cdot y = c \)

Wie Ihr vielleicht erkennen könnt, besteht die Gleichung aus der Summe von zwei Produkten. Die Buchstaben a und b stellen zwei Konstanten dar und x und y die zwei Variablen/ Unbekannten.

Zum Lösen eines Gleichungssystems mit zwei Variablen braucht man mindestens zwei Gleichungen. I und II bezeichnen jeweils die erste (I) bzw. die zweite (II) Gleichung.

\(I: a_1 \cdot x_1 + b_1 \cdot y_1 = c_1 \\
II: a_2 \cdot x_2 + b_2 \cdot y_2 = c_2 \)

Das Ziel ist es, zwei unbekannte Variablen x und y oder a und b zu bestimmen (= herausfinden). Man nennt dies auch das “Lösen des Gleichungssystems“.

Die Lösung eines Gleichungssystems erfolgt unter anderem mit Hilfe der folgenden mathematischen Lösungsverfahren:

  • Gleichsetzungsverfahren
  • Einsetzungsverfahren
  • Eliminationsverfahren
  • Graphisches/ Geometrisches Lösungsverfahren

Mit dem graphischen/ geometrischen Lösungsverfahren kann man die Lösung des Gleichungssystems sehr gut veranschaulichen.

\(I: 5 \cdot x_1 + 25 \cdot y_1 = 20 \\
II: 8 \cdot x_2 + 4 \cdot y_2 = 16 \)

Geometrisch gesehen stellen die zwei Gleichungen nämlich zwei Geraden geraden dar, die entweder einen Schnittpunkt, keinen Schnittpunkt oder endlos viele Schnittpunkte (wenn sie parallel liegen) besitzen.

Graphisches lösen von Gleichungssystemen
Schnittpunkt von zwei Geraden in einem Gleichungssystem
mit den zwei Variablen x und y
(die Grafik wurde mit Hilfe von Geogebra erstellt)
Graphisches lösen von Gleichungssystemen
Schnittpunkt von zwei Geraden in einem Gleichungssystem
mit den zwei Variablen x und y
(die Grafik wurde mit Hilfe von Geogebra erstellt)